
Locomotion and Movement

- The cells of human body exhibit amoeboid, ciliary, and muscular types of movements.
- o Amoeboid movement Example: leucocytes present in the blood
- o Ciliary movement Example: passage of ova through fallopian tube
- Muscular movement Example: movement of limbs, jaws, and tongue

Muscle

- Based on location, muscles are of three types;
- Skeletal muscles/striated muscles Voluntary in nature
- Visceral muscles/smooth muscles Involuntary in nature
- Cardiac muscles Involuntary in nature
- Myofibril is one of the several contractile filaments that make up a striated muscle fibre.
- Sarcomere is a part of myofibril.
- Sarcomere composed of two contractile proteins:
- o Actin Thin filament and called I band
- Myosin Thick filament and called A band
- Z line bisects the centre of each I band.
- The functional unit of contraction between two successive Z lines is known as sarcomere.

- Troponin and tropomyosin are complex regulatory proteins that form a part of an actin filament.
- Troponin is attached to protein tropomyosin and masks the active binding sites for myosin on resting actin filament.
- Each myosin filament is made up of many monomeric protein called meromyosins.

- Meromyosin is made up of light meromyosin and heavy meromyosin. They help in cross bridge formation.
- Based on myoglobin, two types of muscle fibres are present:
 - (i) Red muscle fibres contain an abundance of myoglobin. Lots of mitochondria are present in red muscle fibres.
 - (ii) White muscle fibres contain less amount of myoglobin. Less number of mitochondria is present in white muscle fibres. Sliding filament theory
- It states that during the process of muscle contraction, the thin filaments slide over the thick filaments.
- During muscle contraction:
- The distance between adjacent Z-lines decreases.
- I band gets reduced while A band retains its original length.
- H-zone gets reduced.
- The size of sarcomere decreases.
- Steps of muscle contraction and relaxation:
 - Release of acetylcholine

Generation of action potential

Release of Ca²⁺ ions into sarcoplasm

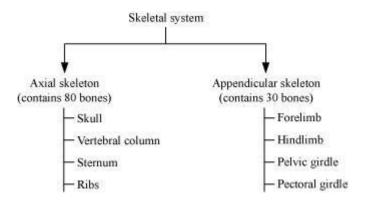
Binding of Ca²⁺ with troponin

Unmasking of binding active site for myosin

Cross bridge formation

Muscle contraction

Breaking of cross bridge


Concentration of Ca²⁺ decreases

Masking of actin filament by troponin

Muscle relaxation

Skeletal system

- Human skeletal system is made up of 206 bones.
- A typical bone consists of osteocytes or bone cells that are embedded in a ground matrix made up of collagen fibres and calcium and phosphorus salts.

- Vertebral column forms the axis of skeleton.
- It comprises a series of 26 vertebrae.
- Vertebral formula Bones of vertebral column starting from skull is C₇T₁₂L₅S₁Co₁.
- Atlas (articulate with occipital condyles) and Axis are the 1st and 2nd vertebrae respectively.
- Sternum is a flat bone on the ventral midline of thorax.
- Ribs (12 pairs) are flat bones attached dorsally to vertebral column and ventrally to sternum.
- True ribs Upper seven pairs
- False ribs 8th, 9th, and 10th pair; as they are not attached to the sternum directly
- Floating ribs 11th and 12th (last two pairs); as they are not attached ventrally

Bones of forelimbs (in both for limbs)	Bones of hind limbs (in both for limbs)
Humerus -2	Femur – 2
Radius and ulna -4	Tibia and fibula – 4
Carpals (wrist bone) - 16	Tarsals (ankle bones) - 14
Metacarpals (palm bones) - 10	Metatarsals - 10
Phalanges (Digits) - 28	Phalanges - 28
	Patella (knee cap) - 2

 Pectoral and pelvic girdle helps in articulation of forelimbs and hind limbs with axial skeleton.

Joints

- Fibrous Do not allow any movement Example: between cranial bones
- Cartilaginous joints Bones joint together with the help of cartilage Example: joint between adjacent vertebrae
- Synovial joint Have fluid-filled synovial cavity

It is of five types:

- Ball and socket joint Example: between humerus and pectoral girdle, femur and acetabulum
- Hinge joint Example: knee joint
- Pivot joint Example: between atlas and axis
- Gliding joint Example: between carpals
- Saddle joint Example: between carpal and metacarpal of thumb

Disorders

- **Myasthenia gravis** Autoimmune disease that affects the neuromuscular junction
- Muscular dystrophy Genetic disorder that leads to weakening of skeletal muscles
- Tetany Associated with painful and involuntary contraction due to low calcium ions in body fluids
- Arthritis Degenerative joint disease that occurs due to inflammation of joints
- **Osteoporosis** Abnormal loss of bony tissue resulting into fragile porous bone
- Gout Accumulation of uric acid crystal that leads to inflammation of joints

Disorders of Muscular and Skeletal system

- Myasthenia gravis Autoimmune disease that affects the neuromuscular junction
- Muscular dystrophy Genetic disorder that leads to weakening of skeletal muscles
- **Tetany** Associated with painful and involuntary contraction due to low calcium ions in body fluids
- **Arthritis** Degenerative joint disease that occurs due to inflammation of joints

- **Osteoporosis** Abnormal loss of bony tissue resulting into fragile porous bone occurs due to decreased estrogen levels
- **Gout** Accumulation of uric acid crystal that leads to inflammation of joints

